Second derivative of cost function and H^1 Newton method for topology optimization problem of density type

351504160 Fukuji Fukuoka

Abstract

Problems making the optimum holes in domains of boundary value problems with respect to partial differential equations have been called topology optimization problems. Among them, a problem in which a density is defined as a design variable has been classified into a topology optimization problem of density type. So far, to find descent directions of cost functions, the H^1 gradient method has been used. However, low convergence has been made a problem. In this study, we derived the second-order Fréchet derivatives of cost functions for the topology optimization problem, and developed a method seeking descent directions of cost functions by a Newton method (H^1 Newton method). Effectiveness of the method was demonstrated with numerical results.

The topology optimization problem of density type is formulated in the following way. Let D be a $d \in \{2,3\}$ dimensional Lipschitz domain. We define a design variable by $\theta \in X = H^1(D; \mathbb{R})$, and a density by its sigmoid function as $\phi(\theta) = (\tanh \theta + 1)/2$. A boundary value problem of partial differential equation is formulated by using an exponential function of $\phi(\theta)$ as a coefficient of the partial differential equation. An objective function f_0 and constraint functions f_1, \cdots, f_m are defined by functionals of $\phi(\theta)$ and the solution of the boundary value problem. With respect to $i \in \{0,1,\cdots,m\}$, θ-derivative $f'_i(\theta)[\vartheta] = \langle g_i, \vartheta \rangle$ of f_i is obtained by the Lagrange multiplier method with respect to the boundary value problem of partial differential equation. θ-Hessian $f''_i(\theta)[\vartheta_1, \vartheta_2] = h_i(\theta_k)[\vartheta_1, \vartheta_2]$ of f_i is derived using the second-order Fréchet derivative of the Lagrange function for f_i. A proposed Newton method for the topology optimization problem of density type is as follows. With respect to an iteration number $k \in \{0,1,\cdots\}$, we define a Hessian of the Lagrange function L for the topology optimization problem of density type as

$$h_{\mathcal{L}}(\theta_k)[\vartheta_1, \vartheta_2] = h_0(\theta_k)[\vartheta_1, \vartheta_2] + \sum_{i \in \{1,\cdots,m\}} \lambda_i h_i(\theta_k)[\vartheta_1, \vartheta_2],$$

where λ_i is the Lagrange multiplier for $f_i \leq 0$. Moreover, let $a_X : X \times X \to \mathbb{R}$ be a bilinear form to ensure the coerciveness and boundedness of $h_{\mathcal{L}}$. In this study, we determine a descent direction of f_i by the following equation for an arbitrary $\psi \in X$.

$$h_{\mathcal{L}}(\theta_k)[\vartheta_{gi}, \psi] + a_X(\vartheta_{gi}, \psi) = -\langle g_i(\theta_k), \psi \rangle$$

A computer program for numerical analysis based on the method was made using the FreeFem++ Language. Figure 1 shows the results for a mean compliance minimization problem of a two dimensional linear elastic body.

![Figure 1: Comparison of H^1 Newton method and H^1 gradient method](image-url)